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Abstract

The different definitions of hardness and elastic modulus as obtained using indentation with conical (also Vickers and Berkovich)
or spherical indenters are compared and relationships that permit a conversion and an assessment of the differences are derived. A

comparison to experimental data is given.
# 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Indentation testing is widely used to assess the
mechanical properties of materials, such as the elastic
modulus and the hardness.1,2 There is a wide choice of
indenter geometries and materials, however, spherical
indenters are used less frequently than pyramidal
indenters,1�3 since sharp indenters cause yielding of the
indented material at a lower load and thus also permit
to assess the properties of very thin films.4,5 However,
there are different definitions of hardness.
The effects of porosity on the hardness and grain

structures have been analyzed in the literature.6 In order
to determine the mechanical properties of a material the
analyzed volume should have a contact radius being
approximately one order of magnitude larger than the
characteristic length scale (pore or grain size).7,8 Smaller
ratios of diameter to characteristic length can lead to
indentation size effects. Recently a experimental com-
parison has been made of the hardness obtained for
ceramics on the basis of different definitions.9,10 In this
paper an attempt is made to derive equations that per-
mit a conversion of hardness values determined under
load and after load removal on the basis of different
standards and definitions.

2. Theory and comparison

An example of a load-displacement curve obtained
using indentation is shown in Fig. 1. For sharp inden-
ters the Martens Hardness HM, also sometimes referred
to hardness under test force (HVL), universal hardness
HU2 or unreduced hardness,11 can be defined as:12�14

HM ¼ P=A ð1Þ

where A is the contact area of the indenter under load,
which is A=� h2 for sharp indenters, with h being the
maximum depth under the load P (see Fig. 1). For a
Vickers or Berkovich indenter �=26.43 and 26.44,
respectively.2 Generally, for a conical indenter the con-

stant �=ptan�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan�ð Þ

2
q

, where � is the half-angle

of the cone. For a spherical indenter A= 2�Rhð Þ. It is
important to note that this hardness definition incorpo-
rates elastic and plastic deformation.
A plastic hardness has been defined as:12�14

Hpl ¼ P=Ar ð2Þ

where the plastically deformed area Ar is defined for
sharp indenters as Ar =�h2r and for spherical indenters
as Ar=2�Rhr, with hr being the intersection with the
abzissa of the tangent of the unloading curve at max-
imum load (see Fig. 1) which is:12,13

hr ¼ hmax � P= dP=dhð Þ ð3Þ

The more commonly used indentation hardness also
sometimes referred to as reduced hardness11 is given for
these indenters as:3
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H ¼ P=Ac: ð4Þ

where the contact area Ac for sharp indenters is
Ac=

ffiffiffi
�

p
tan�hc

� �2
and for spherical indenters

Ac=2�Rhc with hc being the contact depth, i.e. the ver-
tical distance along which contact is made (see Fig. 1),
which is:3

hc ¼ hmax � "P= dP=dhð Þ ð5Þ

In fact, as explained below hr is a special case of hc
generally valid only for a flat punch. Eq. (4) can be used
for Berkovich and Vickers indenters via utilizing the
concept of an equivalent conical indenter. For an ideal
Vickers or Berkovich indenter this leads to �=70.3�.
The parameter " is a geometric constant. It can be
derived that it takes a value of 1 for a flat punch, 0.72
for conical and "=0.75 for paraboloid indenters.3 Often
the Vickers Hardness HV is used as a measure of plastic
deformation, which is defined as:

HV ¼
2Psin�

d2
ð6Þ

where d is the diagonal of the square impression and � is
the half angle between the opposite faces of the pyra-
mid. Since the projected area is d 2/2, the effective radius
of the impression is a=(d 2/2 p)1/2 and the mean inden-
tation pressure is H=HV/sin�. Furthermore, sometimes
HV is still given as a hardness number and requires
transfer into the SI unit Pa.
The effect of friction will lead to a change of the stress

only for sharp indenters, i.e. cube corner indenters.15

For typically used Spherical, Vickers or Berkovich
indenters the effect of friction can be neglected for the
case of plastic deformation, although for a sphere the
position of the initiation of yield will be moved closer to
the surface.16

Sakai17 recently introduced a model to incorporate a
‘‘true hardness’’ which is independent of the indenter
angle. Introducing a first order approximation of the
expanding cavity model into the above equations
would yield relationships depending only on the yield
strength and thus also being independent of the
indenter angle.
Eq. (4) is based on the projected area of the indenta-

tion and it was observed that the determined values
agreed well with hardness measurements based on an
optical measurement of the contact area after unload-
ing, i.e. the Meyer Hardness.3 Note that hr is a special
case of hc for "=1 and:

hr=hc ¼ 1� 1="ð Þh=hc þ 1=" ð7Þ

The use of "=1 for hr is based on calibration for
metallic materials, whereas for ceramic materials differ-
ent values have been suggested.18 This difference is
widely ignored in literature.12,19,20 It can be suggested
that the factor "=1 might be an effect of pile-up during
the measurements.3 As will be shown later the difference
between hr and hc is significant for some materials and
can therefore lead to calibration errors. In fact, all
hardness definitions given above have to be corrected
for the effect of the hardening and related pile-up and
sink-in of the material via the function f (n).21

From Eqs. (1)–(4) the following relationships can be
derived for conical indenters:

HM=Hpl ¼ hr=hð Þ
2

ð8Þ

and

HM=H ¼ �=� tan�hc=hð Þ
2

ð9Þ

For spherical indenters the two hardness ratios
become:

HM=Hpl ¼ hr=h ð10Þ

and

HM=H ¼ hc=h ð11Þ

Eqs. (8) and (9) permit a hardness conversion pro-
vided that the relevant depths are known. Furthermore,
combination of Eqs. (7)–(9) yields for conical indenters:

H ¼
�=� tan�ð Þ

2

1� "ffiffiffiffiffiffiffiffiffi
HM

p þ
"ffiffiffiffiffiffiffiffi
Hpl

p
 !2

ð12Þ

and from Eqs. (7), (10) and (11) an equivalent relation-
ship is obtained for spherical indenters:

H ¼ HM= 1� "þ "HM=Hpl

� �
ð13Þ

Simple mathematical transformation of Eq. (8) per-
mits a determination of HM or Hpl. A general relation-

Fig. 1. Example of a load-displacement curve.
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ship between h and hc has been derived previously for
conical indenters:21

h ¼
hc
f nð Þ

1þ
�tan�

2

"

�

H

Er

� 	
ð14Þ

and spherical indenters:21

h ¼ hc 1þ
�

ffiffiffiffi
R

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f nð Þhc

p "

�

H

Er

" #
¼

"
ffiffiffiffiffiffiffiffiffiffiffi
HP�

p

2�Er
þ

P

2HRf nð Þ�
ð15Þ

Note that it has been shown that similar relationships to
Eqs. (14) and (15) can be useful in the modeling of
impact to predict when the kinetic energy transferred to
the target becomes significant.22

Er is the reduced elastic modulus, which is commonly
defined as:

1

Er
¼

1� 	2i
Ei

þ
1� 	2

E
ð16Þ

where Ei and 	i are Young’s modulus and Poisson’s
ratio of the indenter and E and 	 of the indented mat-
erial, respectively. In the case of elastic deformation, H
in Eq. (9) has to be substituted by the indentation pres-
sure 
H. The correction factor � is due to the fact that
the boundary conditions used to derive elastic contact
models employed in indentation allow for inward dis-
placement of the surface.23

In the literature values of Er=Yð Þ � 3 tan� and
�40 tan� for the onset of yield and fully plastic defor-
mation under conical indenters, respectively, are sug-
gested.24 However, also attempts have been made to access
the extend of plastic deformation under sharp indenters on
the basis of theories for spherical indenters.25

It is very important to note that calibration of the
area function for conical indenters should always be
based on the elastic modulus not the hardness since a
rounded tip can shift the onset of yield to higher loads
and thus lead to errors in calibrations based on hard-
ness values.
Using the equations given above the ratio of HM/H

can be estimated as:

HM

H
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

� tan�ð Þ
2

r
þ

"

�

ffiffiffiffiffiffi
��

4

r
H

Er

" #�2

ð17Þ

For sphere indenters the relationship depends on the
load and is rather complex and therefore not given here.
The ratio of HM to H gives an indication of the effect of
plastic deformation. Simple mathematical transforma-
tion of Eq. (17) will yield relationships for the depen-
dency of H on HM and Er or Er on H and HM. For
conical indenters the ratio HM to H as a function of the
H/Er is plotted in Fig. 2, where it can be seen that HM
differs from H by approximately 10% at H/Er=0.005. It
can be stated that the use ofHM as a parameter to assess
plastic deformation is only reasonably for H<<Er.
Another way to assess the plastic deformation is the

use of the energy dissipated during the indentation. The
elastic and plastic energies are based on the integral of
the loading and unloading curve (see Fig. 3). The total
work Wt can be determined via integration of Eq. (4) in
combination with Eq. (14), which leads to a simple
relationship for conical indenters:

Wt ¼ Ph=3 ¼ �h3HM=3 ð18Þ

Thus HM is a direct measure of the total energy dis-
sipated per indentation volume. For spherical indenters
there is no simple relationship to HM, i.e. slight modi-
fication of Eq. (42) from ref. 21 leads to:

Wt ¼
"P

ffiffiffiffiffiffiffiffiffiffiffi
HP�

p

6�Er
þ

P2

4HR�

¼ 2�HMRh

1þ

ffiffiffi
2

p
�

3

"

�

H

Er

ffiffiffiffiffiffiffiffiffiffiffiffiffi
H

HM

R

h

r

2þ
ffiffiffi
2

p
�
"

�

H

Er

ffiffiffiffiffiffiffiffiffiffiffiffiffi
H

HM

R

h

r ð19Þ

Fig. 2. The ratio HM to H as a function of the H/Er.

Fig. 3. Definition of the elastic energy (gray area between curve 2 and

axis) and the irreversible energy (dark gray area between curves 1 and 2).
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For conical indenters Cheng et al.26,27 have shown
graphs relating the irreversible Wir to total work Wt and
the ratio of hf to h and thus the ratio of the residual
depth H to Er derived on the basis of scaling relation-
ships in combination with finite element simulations.
The underlying relationship was independent of the
strain-hardening exponent and thus not influenced by
pile-up or sink-in. Experimental data for monolithic
materials agreed with their proposition.28 Malzbender et
al.29 suggested that the relationship can be described by
a simple linear equation and verified this experimentally
for coated materials.29 Recently Cheng et al. used the
same description and obtained for a conical indenter
with an half-angle of 70.3�:27

Wir

Wt
¼ 1�

We

Wt
¼

hf
h
¼ 1� 5:33

H

Er
ð20Þ

where We is the elastic energy. Venkatesh et al.30 sug-
gested on the basis of FEM simulation a factor of 5 for
a Vickers indenter and 4.678 for a Berkovich indenter.
Note that the contact areas under the Vickers, Berko-
vich and conical indenter with a half-angle of 70.3� have
the same contact area at a particular load. Note also
that, results by Bilodeau31 suggest slight differences
between the contact area of a Vickers, Berkovich and
the equivalent cone. Another relationship has recently
been suggested by Dao et al.,32 however due to its
complexity the relationship is not given explicitly here.
Based on elastic behavior during unloading Malzbender
et al.21 recently derived the relationship:

Wir

Wt
¼ 1�

We

Wt
¼

hf
h
¼ 1�

"

2
þ

�

�tan�

Er

H

 ��1

ð21Þ

Eqs. (20) and (21) are compared to the results by Doa
et al.32 in Fig. 4. Eqs. (20) and (21) are similar up to
approximately H/Er �0.17 suggesting that this is the
range where the unloading curve can considered to be
elastic. It can be seen easily that Eqs. (20) and (21) lead
to negative values for Wir/Wt at H/Er �0.2 and �0.18,

respectively. The results of Eqs. (20) and (21) strongly
diverge from the relationship suggested by Dao et al.32

at H/Er > 0.1, however, it should be remarked that Dao
et al. determined their relationship by fitting data
determined via FEM in a range up to H/Er of up to
approximately 0.1.
Thus, it is necessary to compare the relationships to

experimental data at H/Er > 0.1 which have been
recently provided by Musil et al.25 Furthermore, data
for H/Er as a function of Wir/Wt obtained for various
materials by the author are also shown (pyrocarbon
Wir/Wt: 0.23, yttria stabilized zirconia—YSZ: 0.35,
NiCoCrAlY 0.74, Steel-1.4742: 0.77, 8YSZ-NiO: 0.78,
LaSrMn: 0.80, LaSrMn-YSZ: 0.85, 8YSZ–Ni: 0.90).33

These data shown in Fig. 4 are closest to the relation-
ship provided by Malzbender et al.21 This relationship
thus permits a determination of the hardness based on
the ratio of the energies independent of pile-up or sink-
in effects if the elastic modulus is measured using a
separate technique, i.e. ultrasonic methods. A method
based on the energies and the ratio of the loading to
unloading slope of the load-displacement curve has been
suggested previously.21

Based on Eqs. (17) and (21) a relationship for H based
on the ratio of the dissipated energies can be derived,
yielding:

H ¼ HM
� tan�ð Þ

2

�
1þ

"

2We=W� "

� 	2

¼
Wt

h3
3 tan�ð Þ

2

�
1þ

"

2We=W� "

� 	2
ð22Þ

and for the elastic modulus:

Er ¼
3

�

We

h3
"W

We
þ

2tan�

2þ "W=We

 �
ð23Þ

In contrast to HM which is proportional to the total
energy the indentation hardness and the elastic modulus
depend on both the elastic and the total energy.
Finally, it has to be remarked that also different defi-

nitions of the elastic modulus are in use. Above we used
the definition after Oliver and Pharr:3

Er ¼
dP

dh

ffiffiffi
�

4

r
1

�
ffiffiffiffiffiffi
Ac

p ð24Þ

However, sometimes based on the use of hr the fol-
lowing relationship is used:12�14

E0
r ¼

dP

dh

ffiffiffi
�

4

r
1ffiffiffiffiffiffi
Ar

p ð25Þ

resulting in the conversion formula:

Fig. 4. Wir/Wt as a function of H/Er, Functional relationship by

Malzbender et al.21 (—), Dao et al.32 (– – –), Cheng et al.27 (- - -); §,

data by Musil et al.25 ~, data obtained by the author.
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E0
r=Er ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ac=Ar

p
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hpl=H

p

¼
f nð Þ�

ð1� 1="Þ 1þ
�tan�

2

"

�

H

Er

� 	
þ f nð Þ="

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� tan�ð Þ

2

�

s

ð26Þ

Thus, the ratio of E0
r=Er is directly related to the ratio of

the dissipated energy via Eq. (21). For the assumption of
no pile-up f(n)=1 a plot of Eq. (26) versus Wir/Wt along
with data obtained by the authors and data obtained from
the publication by Musil et al.25 Fig. 5 shows good agree-
ment. Thus the difference between Er and E0

r and H and
Hpl; respectively, can be assessed via the ratio of Wir/Wt,

leading to a maximum difference of 27 and 38%, respec-
tively, at lowWir/Wt, corresponding to highH/Er.

3. Conclusions

The different definitions of hardness and elastic mod-
ulus are compared and relationships that permit a con-
version and an assessment of the differences are derived.
It has to be remarked that the dependencies are only
valid for ideal indenters and imperfections such as tip
rounding will result in more complex relationships.
Nevertheless these relationships are useful to explain
differences observed between results obtained using dif-
ferent analysis procedures. Special consideration is
given to the relationship between the hardness under
load (universal hardness) and the elastic and plastic
parameters as well as to the relationship of hardness
and elastic modulus to the dissipated energies.
The effects of microcracking and pore compactions

that are commonly observed for ceramic materials are
not treated in detail as such, however, these processes
will not influence the relationships between the macro-
scopic variables discussed in the text as long as the pro-
cedures to determine the hardness and elastic modulus
are applicable.
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